Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bull Environ Contam Toxicol ; 110(5): 93, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37160455

ABSTRACT

Acetamiprid is a broad-spectrum insecticide, belonging to the neonicotinoid compounds group, which has been extensively applied throughout the globe. Recently, indiscriminate use of these compounds was reported to cause fatal impacts on non-targeted soil organisms. Hence, the present study aimed to examine the impact of acetamiprid on Indian indigenous earthworm, Perionyx excavatus. Acute toxicity revealed an LC50 concentration of 0.25 µg/cm2 for filter paper test/72 h and 400 µg/kg for artificial soil test/14 days. Oxidative stress (ROS) and various biomarkers including superoxide dismutase, catalase, glutathione S-transferase, malondialdehyde content and DNA damage were measured. The results of the biomarker responses confirmed the acetamiprid exposure can cause toxicity to P. excavatus. In addition, cell density (20 × 102 cell mL/mg) and cell viability (40%) were significantly (p < 0.05) reduced. Further, the ecotoxicological assessment made through this study can be utilized as good evidence to toxicity of neonicotinoids to non-targeted indigenous organisms.


Subject(s)
Insecticides , Oligochaeta , Animals , Neonicotinoids/toxicity , Insecticides/toxicity , Cell Survival , Soil
2.
Microbiol Res ; 268: 127278, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36565686

ABSTRACT

Extensive use of neonicotinoid insecticides in recent decade had contaminated water and soil systems and poses serious environmental and health risk. Microbial degradation of toxic contaminants in the environment has been established as a sustainable tool towards its remediation. Under this context, the present study focused on the biodegradation of neonicotinoid insecticide acetamiprid, by bacterial strain Brucella intermedia PDB13 isolated from the gut of the acetamiprid exposed earthworms. To enhance acetamiprid biodegradation, suitable parameters such as pH, temperature, inoculum size and acetamiprid concentration range were optimised using Response Surface Methodology (RSM). The experimental results showed that the Brucella intermedium PDB13 can tolerate and degrade relatively high concentrations of acetamiprid (50 - 350 mg L-1). The results confirmed that maximum degradation of about 89.72% was achieved under optimized conditions. Further, confirmation of acetamiprid biodegradation was assessed through the occurrence of its degraded metabolites through HPLC, FTIR, and LCMS analysis. Based on this analysis, possible acetamiprid biodegradation pathway by Brucella intermedia PDB13 was proposed. Additionally, cytotoxicity, earthworm acute toxicity, and zebrafish embryo toxicity studies were also performed to assess the toxicity variations between the parent compound and its metabolites. The acetamiprid treated group resulted in cytotoxic effects apparently, with the increase in aberrant cells frequency (22.5 ± 3.3), when compared with its metabolites (2.3 ± 4.3) and control (1.9 ± 5.6) respectively. All these results evidently reported the degradation potential of Brucella intermedia PDB13, thereby establishing the scope for further advanced biodegradation studies towards mitigating the pesticide pollution.


Subject(s)
Insecticides , Oligochaeta , Animals , Insecticides/metabolism , Oligochaeta/metabolism , Zebrafish , Neonicotinoids/toxicity , Neonicotinoids/chemistry , Neonicotinoids/metabolism , Bacteria/metabolism , Biodegradation, Environmental
3.
Chemosphere ; 311(Pt 2): 136983, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36306962

ABSTRACT

Herein, we report an Ag2Ox (3 wt%)-loaded ZnFe2O4 photocatalysts synthesized by co-precipitation and incipient wet impregnation approach for acetamiprid degradation, antibacterial, antioxidant, and toxicity assay. Initially, bare ZnFe2O4 nanostructures were made through a simple co-precipitation method. In the second step, 3 wt% of various transition metal oxides (CuOx, ZrOx, and Ag2Ox) were embedded on the surface of ZnFe2O4 photocatalysts via a wet impregnation method. Further, the prepared photocatalysts were systematically characterized using XRD, FTIR, FE-SEM, BET, HRTEM, and XPS analysis. The optimum Ag2Ox (3 wt%)-loaded ZnFe2O4 photocatalysts revealed higher degradation efficiencies for acetamiprid under sunlight irradiation. Additionally, the Ag2Ox (3 wt%)-loaded ZnFe2O4 photocatalysts showed more effective antioxidant and antibacterial activity than blank and bare ZnFe2O4 nanomaterials. The enriched catalytic efficiency can be accredited to the 3 wt% of Ag2Ox NPs loaded on ZnFe2O4 nanomaterials, possibly due to the boosted transport properties of the electron-hole pairs. This study will provide a new avenue for the development of simple and effective photocatalysts for efficiently saving polluted aquatic ecosystems.

4.
Oxid Med Cell Longev ; 2022: 3088827, 2022.
Article in English | MEDLINE | ID: mdl-36120599

ABSTRACT

A simple, efficient, and ecofriendly method was employed to synthesize TiO2/ZrO2/SiO2 ternary nanocomposites using Prunus × yedoensis leaf extract (PYLE) that shows improved photocatalytic and antibacterial properties. The characterization of the obtained nanocomposites was done by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopic (EDS) analysis. The synthesized ternary nanocomposites with nanoscale pore diameters were investigated for the elimination of Reactive Red 120 (RR120) dye. The obtained results showed about 96.2% removal of RR120 dye from aqueous solution under sunlight irradiation. Furthermore, it shows promising antibacterial activity against Staphylococcus aureus and Escherichia coli. The improved photocatalytic and antibacterial activity of TiO2/ZrO2/SiO2 may bring unique insights into the production of ternary nanocomposites and their applications in the environment and biomedical field.


Subject(s)
Nanocomposites , Prunus , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli , Nanocomposites/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Silicon Dioxide/chemistry , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL
...